Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Front Pediatr ; 9: 638871, 2021.
Article in English | MEDLINE | ID: covidwho-1457675

ABSTRACT

With birth, the newborn is transferred from a quasi-sterile environment to the outside world. At this time, the neonatal immune system is inexperienced and continuously subject to a process of development as it encounters different antigenic stimuli after birth. It is initially characterized by a bias toward T helper 2 phenotype, reduced T helper 1, and cytotoxic responses to microbial stimuli, low levels of memory, and effector T and B cells and a high production of suppressive T regulatory cells. The aim of this setting, during fetal life, is to maintain an anti-inflammatory state and immune-tolerance. Maternal antibodies are transferred during pregnancy through the placenta and, in the first weeks of life of the newborn, they represent a powerful tool for protection. Thus, optimization of vaccination in pregnancy represents an important strategy to reduce the burden of neonatal infections and sepsis. Beneficial effects of maternal immunization are universally recognized, although the optimal timing of vaccination in pregnancy remains to be defined. Interestingly, the dynamic exchange that takes place at the fetal-maternal interface allows the transfer not only of antibodies, but also of maternal antigen presenting cells, probably in order to stimulate the developing fetal immune system in a harmless way. There are still controversial effects related to maternal immunization including the so called "immunology blunting," i.e., a dampened antibody production following infant's vaccination in those infants who received placentally transferred maternal immunity. However, clinical relevance of this phenomenon is still not clear. This review will provide an overview of the evolution of the immune system in early life and discuss the benefits of maternal vaccination. Current maternal vaccination policies and their rationale will be summarized on the road to promising approaches to enhance immunity in the neonate.

2.
Br J Haematol ; 188(4): 560-569, 2020 02.
Article in English | MEDLINE | ID: covidwho-829537

ABSTRACT

Viral respiratory infections (VRIs) contribute to the morbidity and transplant-related mortality (TRM) after allogeneic haematopoietic stem cell transplantation (HSCT) and strategies to prevent and treat VRIs are warranted. We monitored VRIs before and after transplant in children undergoing allogeneic HSCT with nasopharyngeal aspirates (NPA) and assessed the impact on clinical outcome. Between 2007 and 2017, 585 children underwent 620 allogeneic HSCT procedures. Out of 75 patients with a positive NPA screen (12%), transplant was delayed in 25 cases (33%), while 53 children started conditioning with a VRI. Patients undergoing HSCT with a positive NPA screen had a significantly lower overall survival (54% vs. 79%) and increased TRM (26% vs. 7%) compared to patients with a negative NPA. Patients with a positive NPA who delayed transplant and cleared the virus before conditioning had improved overall survival (90%) and lower TRM (5%). Pre-HSCT positive NPA was the only significant risk factor for progression to a lower respiratory tract infection and was a major risk factor for TRM. Transplant delay, whenever feasible, in case of a positive NPA screen for VRIs can positively impact on survival of children undergoing HSCT.


Subject(s)
Hematopoietic Stem Cell Transplantation , Respiratory Tract Infections/mortality , Transplantation Conditioning , Virus Diseases/mortality , Adolescent , Child , Child, Preschool , Disease-Free Survival , Female , Follow-Up Studies , Humans , Infant , Infant, Newborn , Male , Retrospective Studies , Survival Rate , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL